3 research outputs found

    A deterministic version of Pollard's p-1 algorithm

    Full text link
    In this article we present applications of smooth numbers to the unconditional derandomization of some well-known integer factoring algorithms. We begin with Pollard's p1p-1 algorithm, which finds in random polynomial time the prime divisors pp of an integer nn such that p1p-1 is smooth. We show that these prime factors can be recovered in deterministic polynomial time. We further generalize this result to give a partial derandomization of the kk-th cyclotomic method of factoring (k2k\ge 2) devised by Bach and Shallit. We also investigate reductions of factoring to computing Euler's totient function ϕ\phi. We point out some explicit sets of integers nn that are completely factorable in deterministic polynomial time given ϕ(n)\phi(n). These sets consist, roughly speaking, of products of primes pp satisfying, with the exception of at most two, certain conditions somewhat weaker than the smoothness of p1p-1. Finally, we prove that O(lnn)O(\ln n) oracle queries for values of ϕ\phi are sufficient to completely factor any integer nn in less than exp((1+o(1))(lnn)1/3(lnlnn)2/3)\exp\Bigl((1+o(1))(\ln n)^{{1/3}} (\ln\ln n)^{{2/3}}\Bigr) deterministic time.Comment: Expanded and heavily revised version, to appear in Mathematics of Computation, 21 page

    Majorana neutrino mass matrix with CP symmetry breaking

    Get PDF
    From the new existing data with not vanishing theta13 mixing angle we determine the possible shape of the Majorana neutrino mass matrix. We assume that CP symmetry is broken and all Dirac and Majorana phases are taken into account. Two possible approaches "bottom-up" and "top down" are presented. The problem of unphysical phases is examined in detail.Comment: 6 pages, 2 figures, presented at the XXXV International Conference of Theoretical Physics "Matter to the Deepest 2011", Ustron, Poland, September 12-18, 201
    corecore